
1 

The State 
of 

Parallel Programming  

Burton Smith 

Technical Fellow 

Microsoft Corporation 



2 

Parallel computing is mainstream 

Uniprocessors are reaching their performance limits 
More transistors per core increases power but not performance 

Meanwhile, logic cost ($ per gate-Hz) continues to fall 

What are we going to do with all that hardware? 

New microprocessors are multi-core and/or multithreaded 

Single sockets have uniform shared memory architecture 

Multiple chips may result in non-uniform shared memory 

New “killer apps” will need more performance 

Better human-computer interfaces 

Semantic information processing and retrieval 

Personal robots 

Games! 

How should we program parallel applications? 



3 

Parallel programming languages today 

Threads and locks 
Threads running in uniform shared memory 

Fortran with automatic vectorization 

Vector (SIMD) parallel loops in uniform shared memory 

Fortran or C with OpenMP directives 

Barrier-synchronized SPMD threads in uniform shared 
memory 

Co-array Fortran, UPC, and Titanium 

Barrier-synchronized SPMD threads addressing non-uniform 
shared memory regions 

Fortran or C with MPI 

Threads in non-shared memory regions communicate via 
coarse-grained messages 

These are all pretty low-level 



4 

We need better parallel languages 

Better parallel languages should introduce abstractions to 

improve programmer productivity: 

Implement high level data parallel operations 

Programmer-defined reductions and scans, for example 

Exploit architectural support for parallelism 

SIMD instructions, inexpensive synchronization 

Provide for abstract specification of locality 

Present a transparent performance model 

Make data races impossible 

For the last goal, something must be done about variables 



5 

Shared memory 

Shared memory has several benefits: 
It is a good delivery vehicle for high bandwidth 

It permits unpredictable data-dependent sharing 

It can provide a large synchronization namespace 

It facilitates high level language implementations 

Language implementers like it as a target 

Non-uniform shared memory even scales pretty well 

But shared variables bring along a big drawback: 
stores do not commute with loads or other stores 

Data races are the usual result 

Shared memory is an unsatisfactory programming model 

Are pure functional languages a viable alternative? 



6 

Pure functional languages 

Imperative languages basically schedule values into variables 

Parallel versions of such languages are prone to data races 

The basic problem: there are too many parallel schedules 

Pure functional languages avoid races by avoiding variables 

In a sense, they compute new constants from old ones 

Data races are impossible (because loads commute) 

We can reclaim dead constants pretty efficiently 

Program transformations are enabled by this concept 

High-level operations become practical 

Abstracting locality may also be easier 

But: functional languages can’t mutate state in parallel  

Monads can do it, but only serially 

The problem is maintaining state invariants consistently 



7 

Maintaining invariants 

Serial iteration or recursion perturbs and then restores its 

invariant in local (lexical) fashion 
Composability depends on maintaining the truth of the invariant 

“Hoare logic” is built on all this 

It’s mostly automatic to us once we learn to program 

What about maintaining invariants given parallel updates? 

Two requirements must be met for the state updates 
Pairs of state updates must be prevented from interfering 

That is, they must be isolated in some fashion 

Also, updates must finish once they start 
…lest the next update see the invariant false 

We say the state updates must be atomic 

Updates that are isolated and atomic are called transactions 



8 

Commutativity and determinism 

If statements p and q preserve invariant I and do not 

“interfere”, then their parallel composition { p || q } also 

preserves I † 

If p and q are performed in isolation and atomically, i.e. as 

transactions, then they will not interfere ‡ 

Operations may or may not commute with respect to state 

But we always get commutativity with respect to the invariant  

This leads to a weaker form of determinism 

Long ago some of us called it “good nondeterminism” 

It’s the kind of determinism operating systems rely on 
† Susan Owicki and David Gries. Verifying properties of parallel programs: 

   An axiomatic approach. CACM 19(5):279 285, May 1976. 

 ‡ Leslie Lamport and Fred Schneider. The “Hoare Logic” of CSP, And All That. 

     ACM TOPLAS 6(2):281 296, Apr. 1984.   



9 

A histogramming example 

const double in[N];     //input to be histogrammed 

const int bin(double);  //the binning function 

int hist[M] = {0};      //histogram, initially 0 

for(i = 0; i < N; i++) 

{ 

  int k = bin(in[i]);  

  hist[k]++; 

} 

// ( k)(hist[k] = |{j|0 j<i  bin(in[j])=k}|)

// ( k)(hist[k] = |{j|0 j<N  bin(in[j])=k}|)

Don’t try this in parallel with a pure functional language!



10 

Histogramming in parallel 

const double in[N];     //input to be histogrammed 

const int bin(double);  //the binning function 

int hist[M] = {0};      //histogram, initially 0 

forall i in 0..N-1 

{ 

 int k = bin(in[i]); 

 lock hist[k]; 

 hist[k]++; 

 unlock hist[k]; 

} 

// ( k)(hist[k] = |{j|j   bin(in[j])=k}|)

// ( k)(hist[k] = |{j|0 j<N  bin(in[j])=k}|)
•   is the nondeterministic set of values i processed “so far” 

•  The loop instances commute with respect to the invariant 

•  Premature reads of hist[] get non-deterministic “garbage” 



11 

Abstracting isolation 

const double in[N];    //data to be histogrammed 

const int bin(double); //the binning function 

int hist[M] = {0};     //histogram, initially 0 

forall i in 0..N-1 

 atomic 

  { 

   int k = bin(in[i]); 

  hist[k]++; 

 } 

The abstraction permits compiler optimization 

There may be several alternative implementations 

The word “atomic” may be misleading here 

Does it also mean isolated? 

Does it isolate the call to bin?  The forall? 



12 

Language axioms based on invariants 

In “Hoare logic” for serial programs, we have axioms like 

In the parallel proof logic of Owicki and Gries we write 

For the forall example shown previously, we might write 

where IX  is a predicate on the set X and i is free in Si 



13 

Examples 

Data bases and operating systems mutate state in parallel 

Data bases use transactions to achieve consistency via 
atomicity and isolation 

SQL programming is pretty simple 

SQL is unfortunately not a general-purpose language 

Operating systems use locks to provide isolation 

Failure atomicity is usually left to the OS programmer 

Deadlock is avoided by controlling lock acquisition order 

A general purpose parallel programming language should 
be able to handle applications like these easily 



14 

Implementing isolation 

Analyzing 
Proving concurrent state updates are disjoint in space or time 

Locking 

while handling deadlock, e.g. with lock monotonicity 

Buffering 

An “optimistic” scheme, often used for wait-free updates 

Partitioning 

Partitions can be dynamic, e.g. as in quicksort 

Serializing 

These schemes can be nested, e.g. serializing access to shared 
mutable state within each block of a partition 



15 

Isolation in existing languages 

Statically, in space 
MPI, Erlang 

Dynamically, in space 

Refined C, Jade 

Statically, in time 

Serial execution  

Dynamically, in time 

Single global lock 

Statically, in both space and time 

Dependence analysis 

Semi-statically, in both space and time 

Inspector-executor model 

Dynamically, in both space and time 

Multiple locks 



16 

Atomicity 

Atomicity just means “all or nothing” execution 
If something goes wrong, all state changes must be undone 

Isolation without atomicity isn’t worth too much 

But atomicity is invaluable even in the serial case 

Implementation techniques: 

Compensating, i.e. reversing the computation “in place” 

Logging, i.e. remembering and restoring original state values 

Atomicity is challenging for distributed computing and I/O 



17 

Transactional memory 

“Transactional memory” means isolation and atomicity for 
arbitrary memory references within atomic{} blocks 

There are a few difficulties adapting it to existing languages 

TM is a hot topic these days 

There is much compiler optimization work to be done 

to make atomicity and isolation as efficient as possible 

Meanwhile, we shouldn’t give up on other abstractions 



18 

Multi-object transactions 

node *m;   //a node to be removed from a graph 

... 

atomic { 

  for(n = m.nbr, n != NULL, n = n.nbr) { 

    //remove link from n to m 

    for (p = n.nbr, p != NULL, ... //etc. 

  } 

} 

// ( m)( n)(n (m.nbr)+  m (n.nbr)+)

Care is required when the definition of the invariant’s 
domain depends on bindings within it, e.g. m->nbr 

In naive implementations, deadlock could be commonplace 

If a sequence would deadlock (i.e. fail), preservation of the 
invariant demands it be “undone”, reversing its side effects 



19 

Where do the invariants come from? 

Can a compiler generate invariants from code? 
Only sometimes, and it is quite difficult even then 

Can a compiler generate code from invariants? 

Is this the same as intentional programming? 

Can we write invariants plus code and let the compiler 
make sure that the invariants are preserved by the code? 

This is much easier, but may be less attractive 

See Shankar and Bodik, 2007 PLDI 

Can a programming language/paradigm make it less likely 
that a transaction omits part of an invariant’s domain? 

E.g. objects with encapsulated state 

Can we at least debug our mistakes? 

The debugger should see consistent state modulo breakpoints 



20 

Other language ideas 

Efficient exploitation of nested parallelism 
NESL, Ct, Data-Parallel Haskell 

Parallel divide-and-conquer 

Cilk, TPL 

Parallel speculation 

How can mis-speculated work be stopped and deleted? 

Parallel non-procedural programming 

Logic programming, for example 

This is an abundant source of speculative work 

Speculation deserves a closer look… 



21 

Speculation in logic programming 

A parallel logic program is a set of guarded Horn clauses*: 
H  T1 ... Tk;Tk+1 ... Tm 

If the head H unifies with some goal term in progress and all 
the guard terms T1...Tk are true, the clause commits 

If not, the unification is undone and the clause aborts 

“AND-parallelism” is concurrent evaluation of some Ti 
All the guard terms can be done together, then the others 

“OR-parallelism” is concurrent evaluation of clauses 

Exploiting it requires speculative parallel computation 

Internal state is updated to reflect new bindings 

It has historically been a problem to implement efficiently 

Can fine-grain isolation and atomicity tame OR-parallelism? 

*My syntax is meant to be pedagogic and is decidedly non-standard! 



22 

Dealing with mis-speculation 

There are two problems to solve: 
Naming mis-speculated tasks 

Killing mis-speculated tasks 

Killing tasks that haven’t actually started yet is easiest 

All tasks should be dynamically scheduled anyway 

To support killing without pre-emption, the compiler could 
break tasks up into moderate-sized chunks 

Hardware help might make this even easier 

Nested hypotheses make an (abstract) tree of names 

Potentially, there are tasks scattered all over it 

The language needs a “kill subtree” function 

If task descriptions are first-class, the programmer might be 
able to customize the deletion machinery 



23 

Conclusions 

Functional languages equipped with isolation and atomicity 
can be used to write parallel programs at a high level 

Microsoft is moving in this direction, e.g. with Plinq and F# 

Optimization ideas for isolation and atomicity are needed 

As well as for parallelism packaging and locality 

We trust architecture will ultimately support these things 

They are already “hot topics” in the academic community 

The von Neumann model needs replacing, and soon 


