The State
of
Parallel Programming

Burton Smith
Technical Fellow

Microsoft Corporation

Parallel computing Is mainstream

o Uniprocessors are reaching their performance limits
o More transistors per core increases power but not performance
Meanwhile, logic cost ($ per gate-Hz) continues to fall
o What are we going to do with all that hardware?
o New microprocessors are multi-core and/or multithreaded
o Single sockets have uniform shared memory architecture
o Multiple chips may result in non-uniform shared memory
o New “Killer apps” will need more performance
o Better human-computer interfaces
o Semantic information processing and retrieval
o Personal robots
o Games!

o How should we program parallel applications?

Parallel programming languages today

 Threads and locks

o Threads running in uniform shared memory
 Fortran with automatic vectorization

o Vector (SIMD) parallel loops in uniform shared memory
« Fortran or C with OpenMP directives

o Barrier-synchronized SPMD threads in uniform shared
memory

o Co-array Fortran, UPC, and Titanium

o Barrier-synchronized SPMD threads addressing non-uniform
shared memory regions

e Fortran or C with MPI

o Threads in non-shared memory regions communicate via
coarse-grained messages

o These are all pretty low-level

We need better parallel languages

Better parallel languages should introduce abstractions to
Improve programmer productivity:
o Implement high level data parallel operations

o Programmer-defined reductions and scans, for example

o EXxploit architectural support for parallelism
o SIMD instructions, inexpensive synchronization

 Provide for abstract specification of locality
« Present a transparent performance model

o Make data races impossible

For the last goal, something must be done about

Shared memory

« Shared memory has several benefits:
o Itis a good delivery vehicle for high bandwidth
o It permits unpredictable data-dependent sharing
o It can provide a large synchronization namespace
o It facilitates high level language implementations
o Language implementers like It as a target
o Non-uniform shared memory even scales pretty well

« But shared variables bring along a big drawback:
stores do not commute with loads or other stores

o Data races are the usual result
« Shared memory is an unsatisfactory programming model

Are pure functional languages a viable alternative?

Pure functional languages

« Imperative languages basically schedule values into variables
o Parallel versions of such languages are prone to data races
o The basic problem: there are too many parallel schedules
« Pure functional languages avoid races by avoiding variables
o In asense, they compute new constants from old ones
o Data races are impossible (because loads commute)
o We can reclaim dead constants pretty efficiently
o Program transformations are enabled by this concept
o High-level operations become practical
o Abstracting locality may also be easier
« But: functional languages can’t mutate state in parallel
o Monads can do it, but only serially
o The problem is maintaining state invariants consistently

Maintaining invariants

o Serial iteration or recursion perturbs and then restores its

Invariant in local (lexical) fashion
o Composability depends on maintaining the truth of the invariant
o “Hoare logic” is built on all this
o It’s mostly automatic to us once we learn to program
o What about maintaining invariants given parallel updates?
o Two requirements must be met for the state updates

o Pairs of state updates must be prevented from interfering
« That is, they must be isolated in some fashion

o Also, updates must finish once they start
- ...lest the next update see the invariant false
= We say the state updates must be atomic

o Updates that are isolated and atomic are called transactions

Commutativity and determinism

o If statements p and g preserve invariant | and do not
“Interfere”, then their parallel composition { p || g } also
preserves | T

o If p and q are performed in isolation and atomically, 1.e. as
transactions, then they will not interfere *

« Operations may or may not commute with respect to state

o But we always get commutativity with respect to the invariant

o This leads to a weaker form of determinism

o Long ago some of us called it “good nondeterminism”
o It’s the kind of determinism operating systems rely on

t Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. CACM 19(5):279—-285, May 1976.

* Leslie Lamport and Fred Schneider. The “Hoare Logic” of CSP, And All That.
ACM TOPLAS 6(2):281—296, Apr. 1984.

A histogramming example

const double 1In[N]; //input to be histogrammed
const 1nt bin(double); //the binning function
int hist[M] = {0}; //histogram, initially O
for(hn = 0; 1 < Nj; 1++)
{ /7 (Vk) (hist[k] = |{j|0sj<i A bin(in[j])=k}])
int k = bin(in[i]);
hist[k]++;
} // (Vk) (hist[k] = |{j|0sj<N A bin(in[j])=k}]|)

Don’t try this in parallel with a pure functional language!

Histogramming in parallel

const double 1In[N]; //input to be histogrammed
const 1nt bin(double); //the binning function

int hist[M] = {0}; //histogram, initially O
forall 1 1In O._.N-1

{ /7 (Vk) (hist[k] = |{j|JES A bin(in[j])=k}]|)

int k = bin(in[i]);

lock hist[Kk];

hist[k]++;

unlock hist[k];
Y} // (Vk)(hist[k] = |[{j|0<j<N A bin(in[j])=k}|)
- 2 Is the nondeterministic set of values i1 processed “so far”
e The loop instances commute with respect to the invariant

e Premature reads of hist[] get non-deterministic “garbage”

Abstracting isolation

const double 1In[N]; //data to be histogrammed
const 1nt bin(double); //the binning function
int hist[M] = {0}; //histogram, initially O
forall 1 1In O._.N-1

atomic

{

int k = bin(in[i1]);
hist[k]++;
}

 The abstraction permits compiler optimization

o There may be several alternative implementations
o The word “atomic” may be misleading here

o Does it also mean isolated?

o Does it isolate the call to bin? The forall?

Language axioms based on invariants

 In “Hoare logic” for serial programs, we have axioms like

{BAI}S I}
{1} while B do S {~BnaI}

o In the parallel proof logic of Owicki and Gries we write

USIA A SoA A AL ST |
{I} cobegin S; | Sy || ... || S, coend {I}

o For the forall example shown previously, we might write

UM EEE S Asug g
Y, sforall i in DdoS {Ip}

o Where Iy Is a predicate on the set X and 1 Is free in S;

Examples

« Data bases and operating systems mutate state in parallel

 Data bases use transactions to achieve consistency via
atomicity and isolation

o SQL programming is pretty simple
o SQL is unfortunately not a general-purpose language
o Operating systems use locks to provide isolation
o Failure atomicity is usually left to the OS programmer
o Deadlock is avoided by controlling lock acquisition order

A general purpose parallel programming language should
be able to handle applications like these easily

Implementing isolation

o Analyzing

o Proving concurrent state updates are disjoint in space or time
 Locking

o While handling deadlock, e.g. with lock monotonicity
 Buffering

o An “optimistic” scheme, often used for wait-free updates
o Partitioning

o Partitions can be dynamic, e.g. as in quicksort
o Serializing

These schemes can be nested, e.g. serializing access to shared
mutable state within each block of a partition

Isolation In existing languages

o Statically, in space
o MPI, Erlang

o Dynamically, in space
o Refined C, Jade

o Statically, in time
o Serial execution

o Dynamically, in time
o Single global lock

o Statically, in both space and time
o Dependence analysis

o Semi-statically, in both space and time
o Inspector-executor model

o Dynamically, in both space and time
o Multiple locks

Atomicity

o Atomicity just means “all or nothing” execution
o If something goes wrong, all state changes must be undone
o Isolation without atomicity isn’t worth too much
o But atomicity iIs invaluable even in the serial case
o Implementation techniques:
o Compensating, i.e. reversing the computation “in place”
o Logging, i.e. remembering and restoring original state values

« Atomicity is challenging for distributed computing and 1/O

Transactional memory

 “Transactional memory” means isolation and atomicity for
arbitrary memory references within atomic{} blocks

o There are a few difficulties adapting it to existing languages
o TM is a hot topic these days

 There is much compiler optimization work to be done
o to make atomicity and isolation as efficient as possible

o Meanwhile, we shouldn’t give up on other abstractions

Multi-object transactions

node *m; //a node to be removed from a graph
// (Vm) (Vn) (nE(m.nbr)* <& mE(n.nbr)")
atomic {
for(n = m.nbr, n = NULL, n = n.nbr) {
//remove link from n to m
for (p = n.nbr, p = NULL, ... //etc.
}

o Care is required when the definition of the invariant’s
domain depends on bindings within it, e.g. m->nbr

« In naive implementations, deadlock could be commonplace

o If asequence would deadlock (i.e. fail), preservation of the
Invariant demands it be “undone”, reversing its side effects

Where do the invariants come from?

o Can a compiler generate invariants from code?

o Only sometimes, and it is quite difficult even then
o Can a compiler generate code from invariants?

o Is this the same as intentional programming?

o Can we write invariants plus code and let the compiler
make sure that the invariants are preserved by the code?

o This Is much easier, but may be less attractive
o See Shankar and Bodik, 2007 PLDI

o Can a programming language/paradigm make it less likely
that a transaction omits part of an invariant’s domain?
o E.g. objects with encapsulated state
o Can we at least debug our mistakes?
o The debugger should see consistent state modulo breakpoints

Other language Ideas

o Efficient exploitation of nested parallelism
o NESL, Ct, Data-Parallel Haskell

o Parallel divide-and-conquer

o Cilk, TPL
o Parallel speculation

o How can mis-speculated work be stopped and deleted?
o Parallel non-procedural programming

o Logic programming, for example

o This is an abundant source of speculative work

Speculation deserves a closer look...

Speculation in logic programming

« A parallel logic program is a set of guarded Horn clauses™
H < TiAo o AT G T A - oAT

o If the head H unifies with some goal term in progress and all
the guard terms T, . . . T, are true, the clause commits

o If not, the unification is undone and the clause aborts
o “AND-parallelism” is concurrent evaluation of some T;
o All the guard terms can be done together, then the others
o “OR-parallelism” Is concurrent evaluation of clauses
o Exploiting it requires speculative parallel computation
o Internal state is updated to reflect new bindings
o It has historically been a problem to implement efficiently
« Can fine-grain isolation and atomicity tame OR-parallelism?

*My syntax is meant to be pedagogic and is decidedly non-standard!

Dealing with mis-speculation

o There are two problems to solve:
o Naming mis-speculated tasks

o Killing mis-speculated tasks
o Killing tasks that haven’t actually started yet is easiest
o All tasks should be dynamically scheduled anyway

o To support killing without pre-emption, the compiler could
break tasks up into moderate-sized chunks

o Hardware help might make this even easier
o Nested hypotheses make an (abstract) tree of names
o Potentially, there are tasks scattered all over it

o The language needs a “kill subtree” function

o If task descriptions are first-class, the programmer might be
able to customize the deletion machinery

Conclusions

« Functional languages equipped with isolation and atomicity
can be used to write parallel programs at a high level

o Microsoft is moving in this direction, e.g. with Pling and F#
o Optimization ideas for isolation and atomicity are needed
o As well as for parallelism packaging and locality
o We trust architecture will ultimately support these things
o They are already “hot topics” in the academic community
o The von Neumann model needs replacing, and soon

